Determination of Isotopic Abundance Ratio of Biofield Energy Treated 1,4-Dichlorobenzene Using Gas Chromatography-Mass Spectrometry (GC-MS)

Mahendra Kumar Trivedi¹, Alice Branton¹, Dahryn Trivedi¹, Gopal Nayak¹, Kalyan Kumar Sethi², Snehasis Jana²,*

¹Trivedi Global Inc., Henderson, NV, USA
²Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India

Email address:
publication@trivedisrl.com (S. Jana)
*Corresponding author

To cite this article:
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Kalyan Kumar Sethi, Snehasis Jana. Determination of Isotopic Abundance Ratio of Biofield Energy Treated 1,4-Dichlorobenzene Using Gas Chromatography-Mass Spectrometry (GC-MS). Modern Chemistry. Vol. 4, No. 3, 2016, pp. 30-37. doi: 10.11648/j.mc.20160403.11

Received: May 10, 2016; Accepted: June 25, 2016; Published: July 13, 2016

Abstract: The objective of the current study was to evaluate the effect of biofield energy treatment on the isotopic abundance ratios of P_{M+1}/P_M, P_{M+2}/P_M, P_{M+3}/P_M, and P_{M+4}/P_M in p-DCB using gas chromatography-mass spectrometry (GC-MS). The p-DCB was divided into two parts - one part was control sample, and another part was considered as the treated sample which was subjected to biofield energy treatment (The Trivedi Effect®). T1, T2, T3, and T4 were referred the biofield treated p-DCB having analyzed at different time intervals. The GC-MS analysis of both the control and biofield treated p-DCB indicated the presence of the parent molecular ion peak at m/z 146 along with four major fragmentation peaks at m/z 111, 75, 55 and 50. The relative peak intensities of the fragmented ions in the biofield treated p-DCB were notably changed as compared to the control sample with respect to the time. The isotopic abundance ratio analysis using GC-MS revealed that the isotopic abundance ratio of P_{M+1}/P_M at T1, T2, T3, and T4 (biofield energy treated p-DCB) was significantly increased by 10.87, 83.90, 225.16, and 241.15%, respectively as compared to the control sample. Consequently, the percentage change in the isotopic abundance ratio of P_{M+2}/P_M at T1, T2, and T3 (biofield energy treated p-DCB) was enhanced by 4.55, 9.49, and 1.80%, respectively as compared to the control sample. Beside these, another two isotopic molecular ion peaks at m/z 149 and 150 were found in the GS-MS spectra due to arise from the contributions of various combinations of 2H, 13C, and 37Cl. The isotopic abundance ratios of P_{M+3}/P_M in biofield energy treated sample at T1, T2, T3, and T4 was significantly increased by 15.14, 82.57, 192.43, and 218.31%, respectively as compared to the control sample. Similarly, the P_{M+4}/P_M in biofield energy treated sample at T1, T2, T3, and T4 was significantly increased by 13.80, 86.66, 186.13, and 204.29%, respectively as compared to the control sample. Overall, the isotopic abundance ratios of P_{M+1}/P_M, P_{M+2}/P_M, P_{M+3}/P_M, and P_{M+4}/P_M were significantly enhanced in the biofield energy treated p-DCB. The biofield treated p-DCB has shown improved isotopic abundance ratios that might have altered the physicochemical properties, thermal properties and rate of reaction. Biofield treated p-DCB might be useful in pharmaceutical and chemical industries as intermediates during the manufacturing of pharmaceuticals and chemicals by monitoring the rate of chemical reaction.

Keywords: Biofield Energy Treatment, The Trivedi Effect®, 1,4-Dichlorobenzene, Gas Chromatography-Mass Spectrometry, Isotopic Abundance

1. Introduction

1,4-Dichlorobenzene (para-dichlorobenzene or p-DCB: C₆H₄Cl₂) is a halogenated organic compound, used for pesticide, disinfectant, deodorant, and a precursor to other chemicals [1-3]. Moreover, it is used as a chemical intermediate for the manufacture of dyes, agrochemicals,
pharmaceuticals, plastics, polymers, and other organic synthesis [3]. Acute exposure via inhalation in humans results in irritation of the skin, throat, and eyes [4]. Animal studies have reported the effects of oral exposure to the blood, liver, and kidney has moderate toxicity [5]. Nowadays chlorbenzenes are widely distributed in the environment due to point pollution sources as well as diffusive contamination [6]. It is combustible, incompatible with oxidizing agents, aluminium and its alloys and some plastics [3]. The low flash point (66°C) and low melting point (53.5°C) limits its application [7], and this is one of the reasons for the health discomfort of personnel working with them such as headaches, nausea, vomiting, numbness, and sleepiness [8, 9]. Thus, improvement in the physicochemical and thermal properties (i.e., stability) of p-DCB is one of the important properties which determine the future of the many finished products.

The stable isotope ratio analysis is a molecular tool widely used in several fields such as geographical, agricultural, food authenticity, biochemistry, metabolism, medical research, sports, etc. [10-13]. Similarly, it has great value in the early diagnosis and evaluation of therapies [14]. The isotopic abundance of a molecule can be altered in different ways, such as chemical reactions, etc. [11, 15]. Mr. Trivedi’s biofield energy treatment has the remarkable capability to alter the isotopic abundance ratios of various compounds [16-20]. For e.g. the stable isotopic abundance ratio of P\textsubscript{M+2}/P\textsubscript{M} (18O/16O) in 2-naphthol was increased after biofield energy treatment up to 163.24% [16]. The isotopic abundance ratios of P\textsubscript{M+1}/P\textsubscript{M} (H/1H or 13C/12C) in biofield treated toluene and p-xylene were significantly increased by 531.61 and 134.34%, respectively [17]. Biofield energy is an electromagnetic field existed in the surround of the human body [21-23]. The energy can be harnessed from the universe and then, it can be applied by the healing practitioner on living or non-living objects to achieve the alterations in the characteristic properties. The application of The Trivedi Effect® has gained significantly scientific attention in the field of materials science [24, 25], agriculture [26, 27], biotechnology [28, 29], pharmaceuticals [30, 31], and medical sciences [32, 33].

The mass spectrometry (MS) technique is the primary choice for the isotope ratio analysis [34]. The conventional scanning technique such as gas chromatography-mass spectrometry (GC-MS) can perform isotope ratio measurement at low micro molar concentration levels with sufficient precision if the molar isotope enrichment levels of the molecule are above 0.1%. Several literatures described that the peak height (i.e., relative abundance) in the mass spectra is directly proportional to the relative isotopic abundance of the sample [34-37].

Recently, it has been reported that Mr. Trivedi’s biofield energy treatment (The Trivedi Effect®) has the astonishing capability to change in the physicochemical and thermal properties of p-DCB such as reduced crystallite size, and enhanced thermal stability that might affect the rate of chemical reaction [24]. Based on all these aspects, the current study was designed to investigate the isotopic abundance ratios of P\textsubscript{M+1}/P\textsubscript{M}, P\textsubscript{M+2}/P\textsubscript{M}, P\textsubscript{M+3}/P\textsubscript{M} and P\textsubscript{M+4}/P\textsubscript{M} in biofield energy treated p-DCB using GC-MS technique.

2. Materials and Methods

2.1. Chemicals and Reagents

p-DCB was purchased from S. D. Fine Chemicals Pvt. Ltd., India All the other chemicals used in this experiment were analytical grade purchased from local vendors.

2.2. Biofield Energy Treatment Strategies

p-DCB was divided into two parts; one was kept as a control (un-treated) while another part was exposed to biofield energy treatment (The Trivedi Effect®) and coded as treated sample. The sample for the treatment group was handed over to Mr. Trivedi for biofield treatment. Mr. Trivedi provided the biofield energy treatment through his unique energy transmission process to the treated group for 5 minutes. The treated sample was returned in the similar sealed condition for further analysis.

2.3. Methods of GC-MS Analysis

The GC-MS analysis was performed with the help of Perkin Elmer/auto system XL with Turbo mass, USA. For GC-MS analysis, the biofield energy treated sample was analyzed at the different time point of day 0, 11, 16, and, 23 and denoted as T\textsubscript{1}, T\textsubscript{2}, T\textsubscript{3}, and T\textsubscript{4}, respectively. The spectrum obtained in the form of % relative abundance vs. mass to charge ratio (m/z), which was known as mass spectrum.

The natural abundance of each isotope can be predicted from the comparison of the height of the isotope peak with respect to the base peak, i.e., relative abundance in the mass spectra [34]. The value of the natural isotopic abundance of the some elements are obtained from several literatures and presented in Table 1 [34, 37].

<table>
<thead>
<tr>
<th>Element (A)</th>
<th>Symbol</th>
<th>Mass</th>
<th>% Natural Abundance</th>
<th>A+1 Factor</th>
<th>A+2 Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>1H</td>
<td>1</td>
<td>99.9885</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon</td>
<td>12C</td>
<td>12</td>
<td>0.0115</td>
<td>0.015\textsubscript{m}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C</td>
<td>13</td>
<td>1.108</td>
<td>1.1\textsubscript{m}</td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td>16O</td>
<td>16</td>
<td>99.762</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17O</td>
<td>17</td>
<td>0.038</td>
<td>0.04\textsubscript{m}</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. The isotopic composition (the natural isotopic abundance) of the elements.
The following method was used for calculating the isotopic abundance ratio:

\[\text{P}_M \] stands for the relative peak intensity of the parent molecular ion \([M^+]\) expressed in percentage. In other way, it indicates the probability to have A element (for e.g. \(^{12}\)C, \(^1\)H, \(^{18}\)O, \(^{14}\)N, etc.) contributions to the mass of the parent molecular ion \([M^+\]).

\[\text{P}_{M+1} \] represents the relative peak intensity of the isotopic molecular ion \([M+1^+]\) expressed in percentage

\[\text{P}_{M+1} = \frac{\text{Relative PEAK INTENSITY}}{\text{Relative PEAK INTENSITY of the parent peak)} \]

\[i.e. \text{the probability to have } A+1 \text{ element (for e.g. } ^{13}\text{C, } ^2\text{H,} ^{18}\text{O, } ^{14}\text{N, etc.) contributions to the mass of the isotopic molecular ion } [\text{M}+1^+] \]

\[\text{P}_{M+2} \] represents the relative peak intensity of the isotopic molecular ion \([M+2^+]\) expressed in percentage

\[\text{P}_{M+2} = \frac{\text{Relative PEAK INTENSITY}}{\text{Relative PEAK INTENSITY of the parent peak)} \]

\[i.e. \text{the probability to have } A+2 \text{ element (for e.g. } ^{18}\text{O, } ^{37}\text{Cl,} ^{38}\text{S, etc.) contributions to the mass of isotopic molecular ion } [\text{M}+2^+] \]

Isotopic abundance ratio for \(A+1 \) element = \(\frac{\text{P}_{M+1}}{\text{P}_M} \)

Similarly, isotopic abundance ratio for \(A+2 \) element = \(\frac{\text{P}_{M+2}}{\text{P}_M} \)

Percentage (%) change in isotopic abundance ratio = \(\frac{[\text{IAR}_{\text{treated}} - \text{IAR}_{\text{control}}]}{\text{IAR}_{\text{control}}} \times 100 \)

Where, \(\text{IAR}_{\text{treated}} \) = isotopic abundance ratio in the treated sample and \(\text{IAR}_{\text{control}} \) = isotopic abundance ratio in the control sample.

3. Results and Discussions

The mass spectrum obtained by the GC-MS analysis for the control and biofield energy treated p-DCB (C\(_6\)H\(_4\)Cl\(_2\)) in the positive-ion mode were shown in Figure 1 and 2, respectively. Figure 1 indicated the presence of the parent molecular ion peak of p-DCB at \(m/z \) 146 (calculated 145.97 for C\(_6\)H\(_4\)Cl\(_2\)) at the retention time (R\(_t\)) of 7.23 min along with four major fragmented peaks that were well matched with the literature [38]. The major fragmentation peaks at \(m/z \) 111, 75, 55 and 50 were due to the fragmentation of p-DCB into C\(_6\)H\(_5\)Cl\(^+\), C\(_6\)H\(_3\)Cl\(^+\), C\(_6\)H\(_2\)Cl\(^+\), and C\(_6\)H\(^+\), respectively. The biofield treated sample exhibited the parent molecular ion peaks (C\(_6\)H\(_4\)Cl\(_2\)) at \(m/z \) 146 at R\(_t\) of 7.24, 7.25, 7.27, and 7.33 min and were very close to the R\(_t\) of the control sample. The biofield energy treated sample analyzed at different time intervals (T1, T2, T3, and T4) showed similar fragmentation pattern as control (Figure 2). Only, the relative peak intensities of the fragmented ions in biofield treated sample were significantly altered with respect to the time.

The molecule p-DCB comprises several atoms of H, C, and Cl. Calculating the relative abundances for the isotopic contributions to the peaks in various ion clusters at low \(m/z \) discrimination will reflect the contributions of several different isotopes to the same peak. [34, 37, 39, 40]. The most intense peak P\(_M\) in this cluster was at \(m/z \) 146, and its size is determined solely by the most abundant elemental composition which is defined as ‘100%’.

\[\text{P}_{M+1}, \text{P}_{M+2} \] can be calculated theoretically according to the method described in the materials and method.

\[P(^{13}\text{C}) = [(6 \times 1.1\%) \times 100\% \text{ (the actual size of the } M^+ \text{ peak})] / 100\% = 6.6\%
\]

\[P(^2\text{H}) = [(4 \times 0.015\%) \times 100\%] / 100\% = 0.06\%
\]

Thus, \(P_{M+1} \) i.e. \(^{13}\text{C} \) and \(^2\text{H} \) contributions from (C\(_6\)H\(_4\)Cl\(_2\)) to \(m/z \) 147 is 6.66%.

\[P(^{37}\text{Cl}) = [(2 \times 32.5\%) \times 100\%] / 100\% = 65.0\%
\]

So, \(P_{M+2} \) i.e. \(^{37}\text{Cl} \) contributions from (C\(_6\)H\(_4\)Cl\(_2\)) to \(m/z \) 148 is 65.0%.

Besides these, another two isotopic molecular ion peaks at \(m/z \) 149 and 150 were found in the GS-MS spectra due to the presence of two chlorine atoms in the molecule. \(P_{M+3} \) was obtained from the many possible combinations like \(^{15}\text{C}^{1}\text{Cl}^2\), \(^{2}\text{H}^{1}\text{Cl}^2\), etc. contributions from (C\(_6\)H\(_4\)Cl\(_2\)) to \(m/z \) 149. Similarly, the \(P_{M+4} \) was occurring due to many possible combinations like \(^{13}\text{C}^{2}\text{H}^{1}\text{Cl}^2\), \(^{3}\text{Cl}^{1}\text{Cl}^2\), \(^{3}\text{Cl}^{2}\text{Cl}^0\), \(^{2}\text{H}^{2}\text{Cl}^0\), etc. contributions from (C\(_6\)H\(_4\)Cl\(_2\)) to \(m/z \) 150.

It has been found that statistically, the coincidental of both carbons being \(^{13}\text{C} \) is approximately 1 in 10,000 [41-43]. The deuterium did not contribute much any of the \(m/z \) ratios in natural p-DCB as the natural abundance of deuterium is too small relative to the natural abundances of isotopes of carbon and chlorine. Hence, \(^{13}\text{C} \) and \(^3\text{Cl} \) have the major contributions from (C\(_6\)H\(_4\)Cl\(_2\)) to \(m/z \) 147, 148, 149, and 150 [41-44].

\[P_M, P_{M+1}, P_{M+2}, P_{M+3}/P_M \text{ and } P_{M+4}/P_M \] for the control and biofield energy treated p-DCB at \(m/z \) 147, 148, 149, and 150, respectively were achieved from the observed relative intensity of \([M^+\], \([M+1]\), \([M+2]\), \([M+3]\)] and \([M+4]\) peaks in the GC-MS spectra respectively and are shown in Table 2.

The percentage change in isotopic abundance ratios of \(P_{M+1}/P_M, P_{M+2}/P_M, P_{M+3}/P_M \) and \(P_{M+4}/P_M \) in the control and biofield treated p-DCB are presented in Table 2 and Figure 3. The isotopic abundance ratios in biofield energy treated p-DCB (T1-T4) were calculated comparing to the control sample using the mass spectrum (Table 2). The relative peak intensities of \(P_{M+2} \) and \(P_{M+4} \) was significantly larger than \(P_{M+1} \) and \(P_{M+3} \) due to the high influence of two chlorine atoms presented in p-DCB (Figure 1 and 2).

<table>
<thead>
<tr>
<th>Element (A)</th>
<th>Symbol</th>
<th>Mass</th>
<th>% Natural Abundance</th>
<th>(A+1) Factor</th>
<th>(A+2) Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>(^{14}\text{O})</td>
<td>18</td>
<td>0.200</td>
<td>0.200n(_0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(^{13}\text{N})</td>
<td>14</td>
<td>99.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorine</td>
<td>(^{35}\text{Cl})</td>
<td>35</td>
<td>75.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(^{37}\text{Cl})</td>
<td>37</td>
<td>24.22</td>
<td>32.50n(_{C})</td>
<td></td>
</tr>
</tbody>
</table>

\(A\): Element; \(n\): no of H, C, O, Cl, etc.

<table>
<thead>
<tr>
<th>Nitrogen</th>
<th>0.200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>75.78</td>
</tr>
<tr>
<td>Sulfur</td>
<td>32.50</td>
</tr>
</tbody>
</table>

Note: The isotopic abundance ratios for each element are calculated based on their natural abundance distribution.
Figure 1. The GC-MS spectrum and different proposed fragmentations of control sample of p-DCB.

Figure 2. The GC-MS spectra of biofield energy treated p-DCB analyzed at the different time points (T1, T2, T3, and T4).
The GC-MS spectral analysis revealed that the isotopic abundance ratio of PM+1/PM in biofield energy treated sample at T1, T2, T3, and T4 was significantly increased by 10.87, 83.90, 225.16, and 241.15%, respectively in comparison to the control sample (Table 2). Consequently, the PM+2/PM in biofield energy treated sample at T1, T2, and T3 was increased by 4.55, 9.49, and 1.80%, respectively in comparison to the control sample. On the contrary, the PM+3/PM in biofield energy treated sample at T4 were slightly less (0.28) than the control sample (Table 2). The isotopic abundance ratio of PM+4/PM in biofield energy treated sample at T1, T2, T3, and T4 was significantly increased by 15.14, 82.57, 192.43, and 218.31%, respectively in comparison to the control sample (Table 2). Similarly, the isotopic abundance ratio of PM+1/PM in biofield energy treated sample at T1, T2, T3, and T4 was significantly increased by 1.65, 91.65, 85.22, and 83.48%, respectively in comparison to the control sample (Table 2). The Figure 3 clearly suggest that there was a different effect of the isotopic abundance ratios (PM+1/PM, PM+2/PM, and PM+3/PM) in biofield energy treated samples with respect to the time. This indicated that these samples had the time dependent response. On the other hand, the isotopic abundance ratio of PM+2/PM in treated sample showed different behaviour i.e. it was increased up to a certain period, then suddenly decreased. These results suggest that the biofield energy might have taken some time for the changes in the isotopic abundance ratio.

Replacement of the isotopic composition of the molecule significantly alters the vibrational energy [45, 46]. The vibrational energy depends on the reduced mass (μ) for a diatomic molecule as shown in the below:

\[E_0 = \frac{h}{4\pi} \int f \, \text{d} \mu \]

Where, \(E_0 \) is the vibrational energy of a harmonic oscillator at absolute zero or zero point energy; \(f = \text{force constant} \)

The reduced mass (μ) of some probable isotopic bonds was calculated and presented in Table 3. The result showed that μ of normal bond i.e. \(^{12}\)C-\(^{12}\)C (μ=6), \(^{12}\)C-\(^{35}\)Cl (μ=8.94), and \(^1\)H-\(^{12}\)C (μ=9.92) were increased in case of heavier isotopic bond i.e. \(^{13}\)C-\(^{12}\)C (μ=6.24), \(^{13}\)C-\(^{37}\)Cl (μ=9.06), \(^{13}\)C-\(^{35}\)Cl (μ=9.48), \(^1\)H-\(^{13}\)C (μ=9.03), \(^{13}\)C-\(^{37}\)Cl (μ=9.62), and \(^{13}\)C-\(^{37}\)Cl (μ=1.71). As per the literature, the heavier isotopic molecules have lower diffusion velocity, mobility, evaporation rate, thermal decomposition and reaction rate, but having higher binding energy than lighter molecules [45-48]. The biofield energy treated p-DCB have the higher isotopic abundance ratios. Therefore, after biofield energy treatment, bond strength, stability, and binding energy of p-DCB molecule might be increased due to the higher effective internal mass (μ).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{M+1}/P_M) at m/z 146 (%)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>(P_{M+2}/P_M) at m/z 147 (%)</td>
<td>9.38</td>
<td>10.40</td>
<td>17.25</td>
<td>30.50</td>
<td>32.00</td>
</tr>
<tr>
<td>% Change of isotopic abundance ratio ((P_{M+2}/P_M))</td>
<td>0.0938</td>
<td>0.1040</td>
<td>0.1725</td>
<td>0.3050</td>
<td>0.3200</td>
</tr>
<tr>
<td>(P_{M+3}/P_M) at m/z 148 (%)</td>
<td>83.71</td>
<td>87.52</td>
<td>91.65</td>
<td>85.22</td>
<td>83.48</td>
</tr>
<tr>
<td>% Change of isotopic abundance ratio ((P_{M+3}/P_M))</td>
<td>0.8371</td>
<td>0.9752</td>
<td>0.9965</td>
<td>0.8522</td>
<td>0.8348</td>
</tr>
<tr>
<td>(P_{M+4}/P_M) at m/z 149 (%)</td>
<td>5.68</td>
<td>6.54</td>
<td>10.37</td>
<td>16.61</td>
<td>18.08</td>
</tr>
<tr>
<td>% Change of isotopic abundance ratio ((P_{M+4}/P_M))</td>
<td>0.0568</td>
<td>0.0654</td>
<td>0.1037</td>
<td>0.1661</td>
<td>0.1808</td>
</tr>
<tr>
<td>(P_{M+5}/P_M) at m/z 150 (%)</td>
<td>15.14</td>
<td>17.23</td>
<td>28.26</td>
<td>43.32</td>
<td>46.07</td>
</tr>
<tr>
<td>% Change of isotopic abundance ratio ((P_{M+5}/P_M))</td>
<td>15.14</td>
<td>17.23</td>
<td>28.26</td>
<td>43.32</td>
<td>46.07</td>
</tr>
</tbody>
</table>

Table 3. Possible isotopic bonds in p-DCB.

<table>
<thead>
<tr>
<th>Isotopes bond</th>
<th>Isotope type</th>
<th>Reduced mass (μ) (m_a+m_b/(m_a+m_b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{12})C-(^{12})C</td>
<td>Lighter</td>
<td>6.00</td>
</tr>
<tr>
<td>(^{12})C-(^{13})C</td>
<td>Heavier</td>
<td>6.24</td>
</tr>
<tr>
<td>(^{12})C-(^{35})Cl</td>
<td>Heavier</td>
<td>9.02</td>
</tr>
<tr>
<td>(^1)H-(^{12})C</td>
<td>Heavier</td>
<td>0.93</td>
</tr>
<tr>
<td>(^1)H-(^{13})C</td>
<td>Heavier</td>
<td>1.71</td>
</tr>
<tr>
<td>(^{13})C-(^{37})Cl</td>
<td>Lighter</td>
<td>8.94</td>
</tr>
<tr>
<td>(^{13})C-(^{35})Cl</td>
<td>Heavier</td>
<td>9.48</td>
</tr>
<tr>
<td>(^{13})C-(^{37})Cl</td>
<td>Heavier</td>
<td>9.06</td>
</tr>
<tr>
<td>(^{13})C-(^{37})Cl</td>
<td>Heavier</td>
<td>9.62</td>
</tr>
</tbody>
</table>

m_a: mass of atom A; m_b: mass of atom B, here A and B may be C or H or Cl.
The isotopic abundance ratios of \(P_{M+1}/P_M \) \((\text{H}^2/\text{H} \text{ or } ^{13}\text{C}/^{12}\text{C}), \ P_{M+2}/P_M \text{ (}^{13}\text{C}/^{13}\text{C}), \ P_{M+3}/P_M \text{ and } \ P_{M+4}/P_M \) (the probable combinations of \(\text{H}^2/\text{H}, \ ^{13}\text{C}/^{12}\text{C}, \text{ and } \ ^{35}\text{Cl}/^{37}\text{Cl} \)) in the biofield treated \(p\)-DCB were significantly increased in comparison to the control. The recent physics Noble prize winners explained that the neutrinos change identities which are only possible if the neutrinos possess mass and have the ability to interchange their phase internally from one phase to another (change of flavour). Due to this, the neutrinos have the ability to interact with protons and neutrons in the nucleus. There was a close connection between neutrino and the isotope formation [49, 50]. The biofield energy treatment responsible for the modification in the behaviour at atomic and molecular level by changing the neutron to proton ratio in the nucleus possibly through the introduction of neutrino particles. It was postulated that the changes in isotopic abundance were due to changes in nuclei possibly through intervention of neutrinos. As biofield treated \(p\)-DCB had increased the stable isotopic abundance ratio, it might have altered physicochemical and thermal properties and reaction rate. Thus, the current findings are well associated with the previous results [24].

4. Conclusions

The current study inferred that biofield energy treatment has a remarkable capability for altering the isotopic abundance ratio in \(p\)-DCB. The gas chromatography-mass spectrometric (GC-MS) analysis of the both control and biofield energy treated sample showed the presence of the molecular ion peak at \(m/z \) 146 (calculated 145.97 for \(\text{C}_9\text{H}_7\text{Cl}_2^- \)) along with four major fragmented peaks at \(m/z \) 111, 75, 55 and 50. Only, the relative peak intensities of the fragmented ions in treated sample were different from the control sample. The isotopic abundance ratios analysis in \(p\)-DCB revealed that the isotopic abundance ratio of \(P_{M+1}/P_M \) in biofield energy treated sample at T1, T2, T3, and T4 was significantly increased by 10.87, 83.90, 225.16, and 241.15%, respectively as compared to the control sample. Consequently, the isotopic abundance ratio of \(P_{M+2}/P_M \) was enhanced in biofield energy treated sample at T1, T2, and T3 by 4.55, 9.49, and 1.80%, respectively as compared to the control. Subsequently, the \(P_{M+3}/P_M \) in biofield energy treated sample at T1, T2, T3, and T4 was significantly increased by 15.14, 82.57, 192.43, and 218.31%, respectively as compared to the control sample. Similarly, the isotopic abundance ratio of \(P_{M+4}/P_M \) in biofield energy treated sample at T1, T2, T3, and T4 was significantly improved by 13.80, 86.66, 186.13, and 204.29%, respectively as compared to the control sample. It was observed that the isotopic abundance ratios of \(P_{M+1}/P_M, \ P_{M+2}/P_M, \ P_{M+3}/P_M, \text{ and } \ P_{M+4}/P_M \) in the biofield treated sample were increased gradually with respect to time. As biofield energy treated \(p\)-DCB had increased isotopic abundance ratio, it might have altered physicochemical and thermal properties, and rate of reaction than the control sample. Hence, biofield energy treated \(p\)-DCB could be advantageous during the preparation of pharmaceuticals and chemicals by controlling the rate of chemical reaction.

Abbreviations

A: Element; GC-MS: Gas chromatography-mass spectrometry; \(m/z \): Mass/charge; M: mass of the parent molecule; \(P_M \): the relative peak intensity of the parent molecular ion \([M^+]\); \(P_{M+1} \): the relative peak intensity of the isotopic molecular ion \([M+1]^+\); \(P_{M+2} \): the relative peak intensity of the isotopic molecular ion \([M+2]^+\); \(P_{M+3} \): the relative peak intensity of the isotopic molecular ion \([M+3]^+\); \(P_{M+4} \): the relative peak intensity of the isotopic molecular ion \([M+4]^+\).

Acknowledgements

The authors would like to acknowledge the Sophisticated Instrumentation Centre for Applied Research and Testing - SICART, Gujarat, India for providing the instrumental facility. We are very grateful for the support from Trivedi Science, Trivedi Master Wellness and Trivedi Testimonials in this research work.

References

