Investigation of Biofield Treatment on Antimicrobial Susceptibility, Biochemical Reaction Pattern and Biotyping of Enteropathogenic Multidrug-Resistant Escherichia coli Isolates

Journal: General Medicine: Open Access PDF  

Published: 31-Aug-15 Volume: S2 Issue: 2

DOI: 10.4172/2327-5146.1000S2-002 ISSN: 2327-5146

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Harish Shettigar , Mayank Gangwar and Snehasis Jana

Citation: Trivedi MK, Branton A, Trivedi A, Nayak G, Shettigar H, et al. (2015) Investigation of Biofield Treatment on Antimicrobial Susceptibility, Biochemical Reaction Pattern and Biotyping of Enteropathogenic Multidrug-Resistant Escherichia coli Isolates. Gen Med (Los Angel) S2: S2-002. doi:10.4172/2327-5146.1000S2-002

  • 3133 Views
  • 669 Downloads

Abstract

Study background: Multidrug resistant Escherichia coli (MDR E. coli) has become a major health concern, and failure of treatment leads to huge health burden. Aim of the present study was to determine the impact of Mr. Trivedi’s biofield treatment on E. coli.

Methods: Four MDR clinical lab isolates (LSs) of E. coli (LS 8, LS 9, LS 10, and LS 11) were taken and divided into two groups i.e. control and biofield treated. Control and treated samples were identified with respect to its antimicrobial sensitivity assay, biochemical study and biotype number using MicroScan Walk-Away® system. The analysis was done on day 10 after biofield treatment and compared with its respective control group.

Results: Antimicrobial sensitivity assay showed 50% alteration in sensitivity of total tested antimicrobials in treated group of MDR E. coli isolates. MIC results showed the alteration in MIC of about 40.63% antimicrobials out of thirty two tested antimicrobials, after biofield treatment in clinical isolates of E. coli. Ticarcillin/k-clavulanate showed improved sensitivity (R → I) with decreased MIC value in LS 9 as compared to control. A fourfold and twofold decreased in MIC values were reported in case of piperacillin/tazobactam (in LS 9) and chloramphenicol (in LS 8), respectively as compared to respective control. Biochemical study showed a 39.39% alteration in biochemical reactions after treatment among four isolates of E. coli as compared to control. A significant change in biotype numbers were reported in three clinical isolates (i.e. LS 8, LS 9, and LS 11) of MDR E. coli as compared to control. On the basis of changed biotype number (7774 5272) after biofield treatment, organism with maximum probability was identified as Enterobacter aerogenes in LS 8 as compared to control, (E. coli, 7711 5012).

Conclusion: Overall results suggest that Mr Trivedi’s biofield treatment has a significant effect on altering the antimicrobial sensitivity, biochemical reactions and biotype number of MDR isolates of E. coli.

Conclusion

The overall observations showed that, Mr Trivedi’s biofield treatment on MDR isolates of E. coli induced significant alteration in antimicrobial susceptibility pattern, MIC values, biochemical reactions, and biotype number. A fourfold and twofold decrease in MIC values were found in piperacillin/tazobactam, and chloramphenicol after biofield treatment in LS 9 and LS 8 respectively. A significant change in biochemical reactions and biotype numbers were also observed after biofield treatment in clinical isolates of E. coli.

Based on the study outcome, Mr Trivedi’s biofield treatment could be applied to alter the sensitivity pattern of antimicrobials, against multi-drug resistance isolates of E. coli.