Influence of Biofield Energy Treatment on Isotopic Abundance Ratio in Aniline Derivatives

Journal: Modern Chemistry & Applications PDF  

Published: 02-Oct-15 Volume: 3 Issue: 4

DOI: 10.4172/2329-6798.1000168 ISSN: 2329-6798

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Gunin Saikia and Snehasis Jana*

Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Saikia G, et al. (2015) Influence of Biofield Energy Treatment on Isotopic Abundance Ratio in Aniline Derivatives. Mod Chem appl 3: 168. doi:10.4172/2329-6798.1000168

  • 2920 Views
  • 1106 Downloads

Abstract

The aim of this study was to evaluate the impact of biofield energy treatment on the isotopic abundance of 13C/12C or 2H/1H or 15N/14N ? (PM+1)/PM in aniline; and (PM+1)/PM and 81Br/79Br ? (PM+2)/PM in 4-bromoaniline using Gas Chromatography-Mass Spectrometry (GC-MS). Aniline and 4-bromoaniline samples were divided into two parts: control and treated. The control part remained as untreated, while the treated part was subjected to Mr. Trivedi’s biofield energy treatment. The treated samples were subdivided in three parts named as T1, T2, and T3 for aniline and four parts named as T1, T2, T3, and T4 for 4-bromoaniline. The GC-MS data revealed that the isotopic abundance ratio of (PM+1)/PM in aniline was increased from -40.82%, 30.17% and 73.12% in T1, T2 and T3 samples respectively. However in treated samples of 4-bromoaniline the isotopic abundance ratio of PM+1/PM was increased exponentially from -4.36 % (T1) to 368.3% (T4) as compared to the control. A slight decreasing trend of the isotopic ratio of (PM+2)/ PM in 4-bromoaniline was observed after biofield energy treatment. The GC-MS data suggests that the biofield energy treatment has significantly increased the isotopic abundance of 2H, 13C and 15N in the treated aniline and 4-bromoaniline, while slight decreased the isotopic abundance of 81Br in treated 4-bromoaniline as compared to their respective control.

Conclusion

In summary, aniline and 4-bromoaniline were studied under the influence of biofield energy treatment and significant changes were observed in isotopic abundance as compared to the control sample. The increases in isotopic abundance ratio of 13C/12C or 2H/1H or 15N/14N (PM+1/PM) was up to 73.12% and 368.3% in treated samples of aniline and 4-bromoaniline respectively. However, in treated samples of 4-bromoaniline, the isotopic abundance ratio of 81Br/79Br (PM+2/PM) was decreased by 4.65%. The alteration of isotopic ratio after biofield energy treatment has a significant impact on the bond energies and the chemical reactivity of the molecules. Bond strength may be increased by increasing the effective mass (?), of the atoms which consequently increases the binding energy. The decreased number of 81Br in the treated samples might not affect much on the total effective masses of the respective bonds as the number of altered atoms are negligible as compared to the abundance of the PM+1 isotopes. It is assumed from the results that the increased isotopic abundance ratio of PM+1 after Mr. Trivedi’s biofield energy treatment on aniline and 4-bromoaniline molecules are enough to maintain the stability of bonds, which could result in the reduction of decomposition and photo oxidation reactions initiated by heat, light and molecular oxygen in aniline and 4-bromoaniline.