Effect of Bio Field Treatment on the Physical and Thermal Characteristics of Vanadium Pentoxide Powders

Journal: Journal of Material Sciences & Engineering PDF  

Published: 05-Jan-13 Volume: S Issue: 11

DOI: 10.4172/2169-0022.S11-001 ISSN: 2169-0022

Authors: Mahendra K Trivedi, Shrikant Patil* and Rama Mohan Tallapragada

Citation: Trivedi MK, Patil S, Tallapragada RM (2013) Effect of Bio Field Treatment on the Physical and Thermal Characteristics of Vanadium Pentoxide Powders. J Material Sci Eng S11:001. doi:10.4172/2169-0022.S11-001

  • 3094 Views
  • 882 Downloads

Abstract

Vanadium pentoxide powders are very useful in producing ferrous as well as aluminium alloys, in removing carbon and sulphur and as catalysts in synthesizing ammonia and sulphuric acid. It is also used as corrosion inhibitor petroleum and chemical processing.

In the present investigation V2O5 powders are exposed to biofield. Both the exposed and unexposed powders are later characterized by various techniques. The average particle size is found to decrease with increase in number of days after treatment up to a maximum of 15.9% in 110 days indicating severe fracture at agglomerate/ crystallite boundaries. The BET surface area showed a surprising decrease (it should increase as particle size is decreased) of 7.22% in 109 days indicating the surface densification/ removal of sharp surface corners/ formation of large particles. SEM photographs indeed showed that samples exposed to biofield after 20 days showed increase in size as well as rounded corners. Thermal analysis indicated an increase in melting temperature by 9.9% in samples treated after 57 days along with a much reduced change in weight.

X-ray diffraction of the powder samples indicated both increase and decrease in crystallite size, unit cell volume and molecular weight of samples exposed to biofield after 28, 104, 124 and 139 days.

These results indicate that the catalytic nature of vanadium pentoxide can be controlled by exposing to bio field and using after a specific number of days after exposure.

Conclusion

• Laser diffraction had indicated that both the average particle size d59 and d99 showed an increase immediately after bio field treatment mostly due to agglomeration of particles. After 80 days of treatment the agglomerates of fine particles were broken while coarse particles further increased in size.

• As the number of days after bio field treatment changed from 14 through 95 to109, the surface area had decreased by 1.41, 4.11 and 7.22% respectively. The decrease may be due to observed decrease in fine particles d50 and increase in coarse particles d99.

• The peak temperature in bio field treated vanadium oxide after 57 days had increased by 9.9% from 666.87C to 732.62C. The decrease in mass of the sample was not found to be significant.

• Analysis of x–ray diffraction data led to the following inferences; treatment with bio field initially decreased the Lattice parameter, unit cell volume, molecular weight and crystallite size, while the density had increased. Exactly reverse had occurred after 124 days of treatment. The decreased crystallite size indicates the presence of stresses due to expansion in unit cells which may have caused fracture at weaker planes in the single crystal, and decreased molecular weight indicates that mass is converted to energy.