Characterization of Physical, Thermal and Spectroscopic Properties of Biofield Treated Ortho-Toluic Acid

Journal: Journal of Heterocyclics PDF  

Published: 27-Feb-16 Volume: 1 Issue: 1 Pages: 21-28

DOI:

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Ragini Singh, Snehasis Jana *

Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Singh R, et al. (2016) Characterization of Physical, Thermal and Spectroscopic Properties of Bio field Treated Ortho-Toluic Acid.  J O Heterocyclics 106: 21-28

  • 2353 Views
  • 1245 Downloads

Abstract

Toluic acid isomers are widely used as a chemical intermediate in manufacturing of dyes, pharmaceuticals, polymer stabilizers, insect repellent and other organic synthesis. The aim of present study was to evaluate the impact of biofield treatment on physical, thermal and spectroscopic properties of ortho isomer of toluic acid (OTA). The OTA sample was divided into two groups, served as control and treated. The treated group received Mr. Trivedi’s biofield treatment. Subsequently, the control and treated samples were evaluated using X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis/ derivative thermogravimetry (TGA/DTG), Fourier transform infrared (FT-IR) and ultraviolet-visible (UV-Vis) spectroscopy. XRD result showed 26.66% decrease in crystallite size in treated OTA sample as compared to control. Furthermore, DSC analysis result showed that latent heat of fusion was considerably reduced by 6.68% in treated OTA sample as compared to control. However, an increase in melting point was observed in treated sample. The melting point of treated OTA sample was found to be 107.96°C as compared to control (105.47°C) sample. Moreover, TGA/ DTG studies showed that Tmax (temperature, at which sample lost its maximum weight) was decreased by 1.21% in treated OTA sample as compared to control. It indicates that vaporisation of treated OTA sample might increase as compared to control. The FT-IR and UV-Vis spectra did not show any significant changes in spectral properties of treated OTA sample as compared to control. These findings suggest that biofield treatment has significantly altered the physical and thermal properties of OTA, which could make it more useful as chemical intermediate.

Conclusion

Overall study showed influence of biofield treatment on physical and thermal properties of OTA. XRD result showed that crystallite size was decreased by 26.66% in treated OTA sample as compared to control, which might be due to fracturing of grains into sub grains caused by lattice strain produced via biofield energy. The reduction in crystallite size may lead to increase in reaction kinetics of OTA which make it more useful as an intermediate compound. Thermal analysis data revealed that latent heat of fusion was reduced by 6.68% whereas, melting point was increased by 2.36% in treated OTA sample as compared to control. TGA/DTG studies showed that Tmax was decreased by 1.21% in treated OTA samples. On the basis of reduction in Tmax, it is hypothesized that vaporization temperature of treated OTA sample was decreased as compared to control which could make it more useful in those reactions where OTA was used in vapour state. Furthermore, the decrease in crystallite size and vaporisation temperature may lead to enhance the reaction kinetics. Therefore, it is assumed that biofield treated OTA could be more useful as an intermediate in production of various pharmaceutical products.