Antibiogram, Biochemical Reactions and Genotyping Characterization of Biofield Treated Staphylococcus aureus

Journal: American Journal of Bioscience PDF  

Published: 15-Oct-15 Volume: 3 Issue: 6 Pages: 212-220

DOI: 10.11648/j.ajbio.20150306.13 ISSN: 2330-0159 (print) 2330-0167 (online)

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Sambhu Charan Mondal, Snehasis Jana

Citation: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Sambhu Charan Mondal, Snehasis Jana. Antibiogram, Biochemical Reactions and Genotyping Characterization of Biofield Treated Staphylococcus aureus. American Journal of BioScience. Vol. 3, No. 6, 2015, pp. 212-220. doi: 10.11648/j.ajbio.20150306.13

  • 3058 Views
  • 1053 Downloads

Abstract

Staphylococcus aureus (S. aureus) is the key organism for food poisoning due to massive production of heat stable exotoxins. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield treatment on S. aureus. S. aureus (ATCC 25923) was divided into two parts, Group (Gr.) I: control and Gr. II: treatment. After biofield treatment, Gr. II was further subdivided into two parts, Gr. IIA and Gr. IIB. Gr. IIA was analyzed on day 10, while Gr. IIB was stored and analyzed on day 159 after revival (Study I). The revived sample (Gr. IIB) were retreated on day 159 (Study II), and divided into three separate tubes. Tube 1 was analyzed on day 5, likewise, tube 2 and 3 were analyzed on day 10 and 15, respectively. All the experimental parameters were studied using automated MicroScan Walk-Away® system. The 16S rDNA sequencing was carried out in Gr. IIA sample to correlate the phylogenetic relationship of S. aureus with other bacterial species. The antimicrobial susceptibility and minimum inhibitory concentration showed significant alteration i.e. 92.86% and 90.00% respectively in treated cells of S. aureus as compared to control. The biochemical reactions also showed the significant (35.71%) alteration in treated sample with respect to control. The biotype number and microbial species were substantially changed in Gr. IIA (767177; Staphylococcus cohnii subsp. urealyticum) on day 10, while only the biotype numbers were changed in rest of the treated samples as compared to control (307016; S. aureus). The 16S rDNA analysis showed that the identified strain in this experiment was S. aureus (GenBank Accession No.: L37597) after biofield treatment. However, the nearest homolog genus-species was found as Staphylococcus simiae (GenBank Accession No.: DQ127902). These results suggested that biofield treatment has a significant impact on S. aureus in lyophilized as well as revived state.

Conclusion

In conclusion, the antimicrobial susceptibility pattern and the MIC values showed the significant 92.86% and 90% alteration, respectively of tested antimicrobials as compared to the control strain of S. aureus. The biochemical reactions pattern showed the significant 35.71% alteration as compared to the control. Moreover, the biotype numbers of biofield treated strain of S. aureus were also changed in all the treated groups as compared to the control. Based on the changed biotype numbers after biofield treatment, new species was identified as (767177; Staphylococcus cohnii subsp. urealyticum) in lyophilized treated cells (Gr. IIA) on day 10 with respect to the control Gr. I (307016; S. aureus). Thus, Mr. Trivedi’s unique biofield energy treatment could be applied as an alternative therapeutic approach against antimicrobials to alter the sensitivity pattern. Molecular based 16S rDNA analysis showed that the treated lyophilized sample in this experiment was S. aureus. However, the nearest homolog genus-species was found to be Staphylococcus simiae. Based on these results, it seems that biofield treatment could be used as an alternate of existing drug therapy in future.